Recognizing Weakly Stable Matrices

نویسندگان

  • Peter Butkovic
  • Hans Schneider
  • Sergei Sergeev
چکیده

A max-plus matrixA is called weakly stable if the sequence (orbit) x,A⊗x, A2⊗x, . . . does not reach an eigenvector of A for any x unless x is an eigenvector. This is in contrast to previously studied strongly stable (robust) matrices for which the orbit reaches an eigenvector with any nontrivial starting vector. Max-plus matrices are used to describe multiprocessor interactive systems for which reachability of a steady regime is equivalent to reachability of an eigenvector by a matrix orbit. We prove that an irreducible matrix is weakly stable if and only if its critical graph is a Hamiltonian cycle in the associated graph. We extend this condition to reducible matrices. These criteria can be checked in polynomial time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak log-majorization inequalities of singular values between normal matrices and their absolute values

‎This paper presents two main results that the singular values of the Hadamard product of normal matrices $A_i$ are weakly log-majorized by the singular values of the Hadamard product of $|A_{i}|$ and the singular values of the sum of normal matrices $A_i$ are weakly log-majorized by the singular values of the sum of $|A_{i}|$‎. ‎Some applications to these inequalities are also given‎. ‎In addi...

متن کامل

Computing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method

A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...

متن کامل

Computation of Numerical Padé-Hermite and Simultaneous Padé Systems II: A Weakly Stable Algorithm

For k + 1 power series a0(z), . . . , ak(z), we present a new iterative, look-ahead algorithm for numerically computing Padé-Hermite systems and simultaneous Padé systems along a diagonal of the associated Padé tables. The algorithm computes the systems at all those points along the diagonal at which the associated striped Sylvester and mosaic Sylvester matrices are wellconditioned. The operati...

متن کامل

A fast and stable test to check if a weakly diagonally dominant matrix is an M-matrix

We present a test for determining if a substochastic matrix is convergent. By establishing a duality between weakly chained diagonally dominant (w.c.d.d.) Lmatrices and convergent substochastic matrices, we show that this test can be trivially extended to determine whether a weakly diagonally dominant (w.d.d.) matrix is a nonsingular M-matrix. The test’s runtime is linear in the order of the in...

متن کامل

Operations on Weakly Recognizing Morphisms

Weakly recognizing morphisms from free semigroups onto finite semigroups are a classical way for defining the class of ω-regular languages, i.e., a set of infinite words is weakly recognizable by such a morphism if and only if it is accepted by some Büchi automaton. We consider the descriptional complexity of various constructions for weakly recognizing morphisms. This includes the conversion f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Control and Optimization

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2012